CORE COURSE: Physics

PHYSICS SEM1 PAPER 1: (101) Properties of Matter and Mechanics

	Course Outcome
	Understanding Elasticity; Hooke's Law of Elasticity, Numerical based on
CO1	topics.
	Understand Kinematics of moving fluids; Variation of viscosity with temperature.
CO2	Surface tension, Numerical
СО3	Understanding concept of surface tension, Newton's laws of motion and Co-ordinate systems
CO4	Understand Motion of a Rigid body; rotational motion, Numerical based on topics.

PHYSICS SEM1 PAPER 2: (102) Electrostatics, Time varying fields & Electric Currents

	Course Outcome
	The concept of charge should be known along with the properties of electrical forces.
CO1	Understand familiar forces such as gravitation, Coulomb's Law, along with the principle of
	superposition, calculation of electrostatic forces from a given charge distribution.
	Understand the concept of dielectric constant and polarization in dielectric materials.
CO2	Summarizing various types of polarization of dielectrics. Interpreting Lorentz field and
	Claussius- Mosotti relation in dielectrics. To understand the basic concept of Capacitor.
GOO	To distinguish between static and time -varying fields. Gain knowledge of fundamental
CO3	laws and principles of electromagnetic induction. To explain electrical current, circuits,
	construction and their use and network theorems.
CO1	Knowing and Analyzing the Concepts of Alternating Currents and theory of
CO4	transformer, its losses and uses. Numericals based on topic.

PHYSICS SEM2 PAPER 1: (201) Oscillations, Kinetic theory of gases and Thermodynamics

	Course Outcome
	Understand concept of Waves and Oscillation, Linear S.H.M, Angular
CO1	S.H.M, Differential equations and solutions. Numerical based on topics.
	Superposition of two SHM of same frequency, Numerical based on topics.
CO2	Understand the concept of forced oscillation and topic based numericals. To build a
	strong foundation of knowledge in different areas of basics of Ideal Gas - Kinetic theory
	of Gases
СОЗ	Students understand the basics laws of thermodynamics laws. Numerical based on
	topics
CO4	Understand the Liquefaction of Gases Joule coefficient, Boyle,
	thermodynamic system

PHYSICS SEM 2 PAPER 2: (202) Gravitation, Astrophysics, Magnetism and Magneto statics

	Course Outcome
	To study the Newton's law of gravitation. To study the gravitational field
CO1	and potential. To know the concept of gravitation.
	Acquire knowledge of the Physical universe and its evolution. Define and use
CO2	fundamental principles and techniques of astronomy and astrophysics. Understand and
	apply basic physics and computational techniques to solve problems in astrophysics, and
	interpret the results.
	To understand basic concept of magnetism, classification of different types of
CO3	magnetic materials and its application.
CO4	To understand the concept and study Biot-Savart's law and its application.

To study the divergence and curl of magnetic field.

PHYSICS SEM 3 PAPER 1: (301) Sound waves, Applied acoustic, Ultrasonic and Power

supply

	Course Outcome
	Gain knowledge about superposition two waves, concept of phase velocity
CO1	and group velocity etc.
	Understand acoustic waves, noise and intensity of loudness, to gain the knowledge of
CO2	design of acoustic hall and auditorium.
CO3	To gain the knowledge of ultrasonics, ultrasonic waves and its effect and applications
	Understand the concept of power supply. To apply the knowledge of
CO4	rectifier and diode in application.

PHYSICS SEM3 PAPER 2: (302) Physical optics and Electromagnetic waves Practical

	Course Outcome
	To understand the light phenomenon such as Interference of light. To study
CO1	Newton's rings and Michelson's Interferometer.
CO2	To know the concept and study of diffraction. To study types of diffraction such as Fresnel's and Fraunhofer diffraction and its application. Understand the concept of resolving power of grating,
соз	To know the concept and study of polarization and its application like double prism and Nicol's prism.
CO4	Understand Maxwell's relation for electromagnetic waves, their propagation in vacuum and other medium.

	Course Outcome
	Understanding basics of Crystallography, its type single, polycrystalline,
CO1	Miller indices, X-rays diffraction, determination of lattice parameters,
	Understanding defects and dislocations in crystals.
	To Interpret and understand X-rays and their properties. Describe and detect diffracted x-
CO2	rays as well as the geometry of diffractions.
GOA	To understand the concept of reciprocal lattice, Bragg's law and X-ray diffraction
CO3	methods.
	Understand the concepts of Laser Optics, basic principle of Laser, its
CO4	production, types and application and uses. Numerical based on topics

PHYSICS SEM 4 PAPER 2: (402) Solid State Electronics, and Molecular Physics Practical

	Course Outcome
	To understand fundamentals of semiconductor and applications to the
CO1	electronic devices. Brief understanding of Solid-State Electronics and bipolar
	transistor.
	To understand the working and principle of different type of Field effect transistors and
CO2	their applications.
CO3	To develop basics of molecular physics and to generate the idea of all possible reasons
	of spectra and thus the thinking ability regarding empirical modelling. The problem-
	solving skill is developed by studying the mathematical concept of the rotational spectra.
CO4	To understand the fundamental theory behind Raman Spectra, various types
	of Raman Spectra, their selection rule. To understand the use of

PHYSICS SEM 5 PAPER 1: (501) Atomic Physics, Free Electron Theory and Statistical Physics

	Course Outcome
	Understanding Spectra of Single and Multi-Electron Atoms, Fundamentals
CO1	of atom and its structure.
	Explain the theory and applications of Free Electron Theory and Band Theory of Solids.
CO2	
CO3	Students develop the understanding of the concept of Probability, microstates and macrostates and how the particles are distributed in the system in different states.
CO4	To understand the Distribution of distinguishable and indistinguishable, to understand the methods of statistical mechanics used to develop statistics
	for Bose-Einstein Statistics. Photon gases and Fermi-Dirac statistics and
	Energy distribution law for electron gas in metal.

PHYSICS SEM 5 PAPER 2: (502) Quantum mechanics, Nanomaterials and Nanotechnology

	Course Outcome
	Understand the general formulation of quantum mechanics using the
CO1	phenomenon like photoelectric effect, Compton effect, Heisenberg
	uncertainty principle, wave and particle duality. Numerical based on topics.
	Understanding the concept of wave function and wave packet is introduced. Study of
CO2	probability, expectation value and Ehrenfest's theorem assist students to be enriched with
	mathematical calculation. Understanding and analyzing the Schrodinger Equations for
	time and time independents equations, its numericals.

CO3	To understand basic concept of Nanoscience and History of nano materials, quantum
	size effect, properties of nano materials.
CO4	To find different methods for synthesis of nanomaterials and
	characterization of nanomaterials. Its application.

PHYSICS SEM 6 PAPER 1: (601) Relativity, Nuclear physics and Bio Physics

	Course Outcome
CO1	Would be able to understand the inertial and non-inertial frame of references
	and describe how fictitious forces arise in a non-inertial frame. Understand
	the importance of Michelson Morley's experiment in reference to special
	theory of relativity
CO2	To Develop concepts in fission, neutron cycle and also explore ideas in fields
	of particle accelerators. To develop concepts of liquid drop model and shell
	model.
CO3	Ability to understand fundamental concepts in nuclear physics and physics
	involved in alpha beta and gamma decay. Gaining knowledge on nuclear
	detectors.
CO4	An understanding of physics in biosensor, electrode. An understanding of
	biomedical instrumentation principles in aspects of device design and
	applications.

PHYSICS SEM 6 PAPER 2: (602) Electronics, Fiber optics, Communication and Digital

Electronics

	Course Outcome
	Students would learn about electronic circuits such as Amplifiers and
CO1	Oscillators. Various types of Amplifier and Oscillator circuits their working
	and applications in domestic, industrial and scientific devices/equipments.

	To understand the optical fiber. Its principle, operation and application.
CO2	
CO3	To understand various modulation and demodulation techniques used for communication. The paper needs a basic knowledge in electronics and mathematics and the learners are expected to come out with the ability to choose proper modulation techniques.
CO4	To develop basic understanding of Boolean algebra and digital circuits. Topics in course need to have a basic knowledge in Solid State Electronics and are expected to gain knowledge to design electronic circuits.