Department of Mathematics

Programme Specific Outcome

PSO 1 B.Sc graduates apply their broad knowledge of science across a range of fields, with indepth knowledge in at least one area of study, while demonstrating an understanding of the local and global contexts in which science is practiced.

PSO 2 Articulate the methods of science and explain why current scientific knowledge is both contestable and testable by further inquiry. Apply appropriate methods of research, investigation and design, to solve problems in science.

PSO 3 Mathematics UG student at Dr. Ambedkar College, Deekshabhoomi, Nagpur will be able to apply critical thinking skills to solve problems that can be modeled mathematically, to critically interpret numerical and graphical data, to read and construct mathematical arguments and proofs, to use computer technology appropriately to solve problems and to promote understanding, to apply mathematical knowledge to a career related to mathematical sciences or in post - UG studies.

Course/Semester/ Paper	Name of Paper	Course outcome
		CO1: Apply De Moivre's Theorem to
		find powers and roots of complex
		numbers, and solve polynomial
		equations involving complex roots.
		CO2: Analyze and manipulate
		matrices using various techniques,
B.Sc. Sem I Paper	M-1: Elementary	including determining the rank of a
I	Mathematics	matrix, transforming matrices to row
		canonical form, solving systems of
		equations, and applying the Cayley-
		Hamilton theorem to derive properties
		of a matrix.
		CO3: Students will gain a
		comprehensive understanding of

Course Outcomes

		various theorems and techniques for
		analyzing and solving equations,
		including relations between roots and
		coefficients, Descartes' rule of signs,
		Horner's process, transformation of
		equations, reciprocal equations, and
		solutions for cubic and biquadratic
		equations.
		CO4: Students will be able to
		understand and apply the division
		algorithm, greatest common divisor,
		Euclidean algorithm, Diophantine
		equations, the fundamental theorem of
		arithmetic, properties of congruence,
		linear congruence, and the Chinese
		remainder theorem.
		CO1: Students will be able to find out
	M2: Differential and Integral Calculus	expansion of various functions.
		CO2: Students can find limit and
		continuity of functions of two
		variables.
B.Sc. Sem I Paper		CO3: Students will able to solve
II		problems of maxima and minima of
		functions of two variables.
		CO4: Students learn how to find nth
		derivative of functions by using
		reduction formulae.
		CO1: Students get idea about sphere
B.Sc. Sem II Paper I	M3: Geometry, Differential & Difference Equations	and they can find the equation of
		sphere.
		CO2: Students get idea about various
		<u> </u>

		Differential equations and they solve
		the problems.
		CO3: Students learn second order
		linear equation they are able to solve
		the problems.
		CO4: They learn definition of
		difference equation and are able to find
		the solutions of difference equations.
		CO1: Students will be able to
		effectively apply vector differentiation
		techniques, understand concepts of
		differential geometry, and confidently
		work with gradient, divergence, and
		curl operations.
		CO2: Students will possess the skills
		to successfully perform double
		integration, evaluate double integrals,
		apply double integrals in various
B.Sc. Sem II		applications, work with area in polar
Paper II	M-4: Vector Analysis	coordinates, perform triple integration,
		understand the gamma function, its
		transformation and relation with the
		beta function, and evaluate and
		manipulate the beta function including
		its symmetric property and
		transformation.
		CO3: Students will have the ability to effectively integrate vectors over
		effectively integrate vectors over curves, calculate line integrals,
		perform surface integrals, and evaluate
		volume integrals.
		volume integrais.

		CO4: Students will be able to apply
		Green's theorem in the plane and its
		applications, understand and utilize the
		Gauss divergence theorem, and apply
		Stokes' theorem to solve various
		problems in vector calculus.
		CO1: Students learn PDE and come to
		know how to solve the PDE.
		CO2: Students are able to find linear
	M5: Partial differential	PDE by various method.
B.Sc. Sem III	equation and Calculus	CO3: Students know the various
Paper I	of variations	method of solving linear PDE with
		constant coefficients.
		CO4: Students get idea of definition of
		functional and able to find functional.
		CO1: Students will have a solid
		understanding of the definition and
		examples of groups, the concept of
		subgroups, and a counting principle
		related to group theory.
		CO2: Students will have a
		comprehensive understanding of
B.Sc. Sem III	M-6: Modern Algebra	normal subgroups and quotient groups,
Paper II		homomorphisms, and permutation
		groups.
		CO3: Students will have a thorough
		understanding of the definition and
		examples of rings, various special
		classes of rings, homomorphisms,
		ideals, and quotient rings.
		CO4: Students will have a deep

		understanding of the field of quotients
		of an integral domain, Euclidean rings,
		a specific Euclidean ring, and
		polynomial rings.
		CO1: Students are able to find the
		open sets interior point and limit point
		of a set, they are able to solve the
		examples.
		CO2: Students are able to find the
B.Sc. Sem IV	M7:Real Analysis	convergent and divergent sequence
Paper I	<i>y</i>	CO3: Students learn the infinite series
		and able to solve the various problems.
		CO4: Students will be familiar with
		remain integral and properties of
		integral function.
		CO1: Students will possess a
		comprehensive understanding of the
		introduction to series solutions, power
		series review, the series solution of
		first-order equations, second-order
		linear equations, ordinary and singular
		points, regular and irregular singular
B.Sc. Sem IV	M-8: Mathematical	points, as well as Legendre's and
Paper II	Methods	Bessel's equations.
-		CO2: Students will have a solid grasp
		of Legendre's and Bessel's functions,
		including their properties, generating
		functions, recurrence relations, and the
		concept of orthogonality of functions.
		CO3: Students will have a
		comprehensive understanding of the

		Laplace transform and its application,
		including the transformation of
		elementary functions, properties of
		Laplace transforms, inverse Laplace
		transforms, transforms of derivatives
		and integrals, Laplace transform of
		t·f(t), Laplace transform of $f(t)/t$, the
		convolution theorem, and the solution
		of ordinary differential equations with
		constant coefficients as well as
		simultaneous ordinary differential
		equations.
		CO4: Students will have a
		comprehensive understanding of
		Fourier coefficients, convergence
		issues, even and odd functions, half-
		range cosine and sine series, and the
		extension of Fourier series to arbitrary
		intervals.
		CO1: Students will have a
		comprehensive understanding of
		functions of complex variables,
	M-9: Complex Analysis	including their definition, limits,
		continuity, differentiability,
B.Sc. Sem V		analyticity, the necessary and
Paper I		sufficient conditions for a function to
		be analytic, the Cauchy-Riemann
		equations in polar form, orthogonal
		curves, harmonic functions, and
		methods for finding conjugate
		functions using the Milne-Thomson

		method.
		CO2: students will have a
		comprehensive understanding of
		transformations, including conformal
		transformations, linear
		transformations, magnification,
		rotation, inversion, reflection, their
		combinations, bilinear transformations,
		and the Schwarz-Christoffel
		transformation.
		CO3: Students will have a
		comprehensive understanding of
		complex integration, including the
		Cauchy integral theorem, Cauchy
		integral formula, Morera's theorem,
		Cauchy's inequality, and Liouville's
		theorem.
		CO4: Students will possess a
		comprehensive understanding of the
		convergence of series with complex
		terms, Taylor's theorem, Laurent's
		theorem, singular points, residues,
		residue theorem, evaluation of real
		definite integrals using contour
		integration, and evaluation of improper
		indefinite integrals.
	M10.M.dmi- S	CO1: Students get idea of metric
B.Sc. Sem V Paper II	M10:Metric Space ,	space, interior point, open sets and closed sets.
	Boolean Algebra &	
	Graph Theory	CO2: Students solve the problems of metric space and compact sets
		metric space and compact sets.

		CO3: Students learn the properties of
		lattices.
		CO4: Students know basic concept of
		graph theory and solve the problems.
		And learn how to find metric
		representation of graphs.
		CO1: Students will have a
		comprehensive understanding of forces
		acting at a point, parallel forces,
		moments, couples, coplanar forces,
		reduction theorems, equilibrium under
		three forces, general conditions of
		equilibrium, and the concept of the
		center of gravity.
		CO2: Students will have developed a
		thorough understanding of work and
		energy principles, virtual work
B.Sc. Sem V	M-11: Mechanics	applications, the behavior of flexible
Paper II	(Optional)	strings, and the characteristics of the
Paper II	(Optional)	common catenary.
		CO3: Students will have acquired a
		comprehensive understanding of
		motion in a plane, including velocity
		and acceleration components, angular
		velocity and acceleration, the
		relationship between angular and linear
		velocities, tangential and normal
		components of velocity and
		acceleration, Newton's Laws of
		motion, and projectile motion.
		CO4: Students will have developed a

		comprehensive understanding of
		Lagrange's dynamics, constraints,
		generalized coordinates, the principle
		of virtual work and D'Alembert's
		principle, Lagrange's equations, the
		reduction of the two-body central force
		problem to the equivalent one-body
		problem, motion in a plane under
		central force, differential equations of
		an orbit, the inverse square law of
		force, and the Virial theorem.
		CO1: Students are able to find that
		given set is a vector space or not.
		CO2: They learn definition of linear
B.Sc. Sem VI	M-12: Linear Algebra	transformation and solve the problems.
Paper I	WI-12. Linear Aigebra	CO3: They come to know the
		application the theory of ordinary DE.
		CO4: Students get the idea of linear
		operation of matrices.
B.Sc. Sem VI Paper II	M13: Numerical Methods (Optional)	CO1: Students will have developed a strong understanding of various numerical methods for solving equations, including the bisection method, the method of false position, iteration methods, the Newton-Raphson method, Ramanujan's method, the secant method, Muller's method, and techniques for solving systems of non-linear equations. CO2: Students will have a solid understanding of finite differences, differences of a polynomial, Newton's formulae for interpolation, central difference interpolation formulae, interpolation with unevenly spaced points, divided differences and their

		interpolation. CO3: Students will have acquired a comprehensive understanding of numerical differentiation, determining maximum and minimum values of a tabulated function, numerical integration techniques, and the application of the Euler-Maclaurin formula. CO4: Students will have developed a solid understanding of various numerical methods, including solution by Taylor's series, Picard's method of successive approximation, Euler's method, Runge-Kutta method, predictor-corrector method, cubic spline method, and techniques for solving simultaneous and higher-order equations.
B.Sc. Sem VI Paper II	M-14: Special Theory of Relativity (Optional)	CO1: Students will have developed a solid comprehension of Newtonian mechanics, covering topics such as inertial frames, the speed of light and Galilean relativity, the relative nature of space and time, the postulates of the special theory of relativity, the geometric interpretation of Lorentz transformation equations, and the group properties associated with Lorentz transformations. CO2: Students will have gained a comprehensive understanding of relativistic kinematics, including the composition of parallel velocities, the relativistic addition law for velocities, transformation equations for velocity and acceleration components, the transformation of Lorentz contraction factor, length contraction, and time dilation. CO3: Students will have developed a comprehensive understanding of the geometrical representation of space- time in the context of relativity, including the four-dimensional

Minkowskian space-time, space-like and time-like intervals, proper time, the concept of the light cone or null cone, and the use of four-vectors and tensors in Minkowskian space-time. CO4: Students will have developed a comprehensive understanding of relativistic mechanics and electromagnetism, covering topics such as the variation of mass with velocity, the equivalence of mass and energy, transformation equations for mass, momentum, and energy, relativistic force and its components, relativistic Lagrangian and Hamiltonian, Maxwell's equations in vacuum, propagation of electric and magnetic field strengths, the four- potential, and transformation equations for electromagnetic four-potential
vector, electric and magnetic field strengths.